The Probabilistic Risk Assessment of the Abandoned Chemical Weapons in China

Performed for the ACW Cabinet Office of Japan 2003 - 2007

Background of ACW in China

- 1945: Abandoned
- 1949-55: Buried in Northern China
- 1995-7: CWC Ratification
- 1999: the Abandoned Chemical Weapons (ACW) Office Formed

According to the treaty, the weapons were to be Excavated and Disposed of by 2007; now, perhaps, by 2015.

Haerbaling District, Dunhua City, Jilin Province

- The number of CWs is believed to be about 500,000.
- Mainly concerned with two types of Chemical agents:
 - Yellow agent
 - Red agent (DC/DA)

5,000 People in 10km; 500;000 in 50km

The Three Questions of Probabilistic Risk Assessment

- (1) What can go wrong?
- (2) What is the likelihood?
- (3) What is the damage?

Scenario	Likelihood	Damage
S ₁	ℓ_1	X 1
S ₂	ℓ_2	X 2
\$3	ℓ_3	X3
•	•	•
•	•	•
•	•	•
•	•	•
•	•	•
SN	$\ell_{\rm N}$	XN

$$\mathbf{R} \equiv \mathbf{Risk} = \{ < \mathbf{s}_i, \ell_i, \mathbf{x}_i > \}$$

What the Japanese Government Wanted to Know

- 1. What Can Go Wrong?
 - Weapon explosions
 - Release of toxic materials
- 2. What are the Potential Damages?
 - Worker Injuries
 - Population injuries
 - Facility damages
 - Environmental pollutions (soil, air, water)
- 3. What is our Financial Exposure?
 - Third party liability
 - Workers compensation
 - Repair/Recovery Cost

What We Needed to Know

- 1. What can happen during the processes?
- 2. Under what conditions does a weapon explode?
- 3. How much of agent is released to air?
- 4. What are the weather conditions?
- 5. Blast effect to buildings and equipment?
- 6. What are the effects to human health? How many people may be injured?
- 7. Is environment contaminated? Cleanup necessary?
- 8. Effectiveness of emergency response?

Three Big Questions We Had

- 1. The ACW in China have been buried underground for decades
 - How can we estimate the conditions, types, and number of buried weapons?
- 2. There is a Large amount of weapons
 - If a weapon detonates, could it start a domino effect?
- 3. Weapons contain toxic materials – How do we estimate the long term health effects of toxic materials (or even short term)?

Roadmap

Overview of the ACW Hearbaling Site

Excavation

Main Plant (Yellow Munitions)

Main Plant (Yellow Munitions) (Cont.)

ACW PRA

1.What can go wrong?2.How likely is it?3.What are the consequences ?

Data Gathering

Using Data from Other Weapon Sites

Bayesian 2nd stage update technique was used to create uncertainty distributions for each weapon type, based on:

- Weapon data of other sites,
- Expert opinions, and
- Exploratory excavation at the Haerbaling site.

Sympathetic Detonation

AUTODYN 3 D (76mm)

Sympathetic Detonation (Continued)

AUTODYN 3 D 76mm

Results of SympFD

Event Sequence Model for Disposal E.g. Weapon Drop

Transportation Fire Simulation

0.260485883	Uniform Ra	ndom Number fo	r Event										
				Tank Cap	acity Full								
Event		Simulation Probability Used	Spill Area	Correlated Fuel	First Truck Simulation	Middle Truck Simulation	Last Truck Simulation		Tank Capaci	ty Full			Tank Filled
Car-Truck		0	8	230	0.2177	0	0.1012			capacity			
Single Truck		0.343	6	150	0.4675	0.343	0.4009		Car Tank	80	liters		Car Tank
Truck-Truck		0.657	10	300	0.3148	0.657	0.4978		Truck Tank	150	liters		Truck Tank
Probability of Single T	ruck Collidin	g with Object		0.105									Tank Filled
Probability of Single Tr	ruck Rollove	r/Fire Only Event	t	0.895									
Event Connector		Circula Tauala	Tura	Dellever	0.0044000	Listers De	a ala an Alizanti		Const Trees				Car Tank
Event Scenario:		Single Truck	Type:	Rollover	0.2941699	Uniform Ra	naom Numc	Der for	Event type				Truck Tank
Combustion Rate:		0.16	inches/min										
Burn Time=		150	liters	х	1000	cm³/liter							
	1	6	ft ²	x	929	cm ² /ft ²	x	0.16	inches/min	x	2.54	cm/inch	
Unmitigated Burn Time:		66.22	min										
Linner Limit of Eucl for		00.22											
Escort Fire Fighting		225	liters										
Pr Escort Takes Actions		0.75	0	Uniform Ra	andom Numb	er for Esco	rt Taking Ac	tion					
Escort Would Fight Fire		Yes		1									
Time for FD to Arrive		3	Minutes										
Pr FD Takes Action		0.8	0	Uniform Ra	andom Numb	er for FD Ta	aking Action						
FD Would Fight Fire		Yes											
Escort Adjusted Burn Time		31.60858344											
Final Adjusted Burn Time		6.321716688		0	1	0	0						
										-		-	
													+
													<u> </u>
												1	

MIDAS Agent Dispersion & Transportation Model (Particle Tracking Model)

Health Effect Analysis

2

5,711

33,453

53,689

51,834

21,690

Spatial Database of Rooms

Room Database

File Fire Calculations Reports Tools QBF Help

Room Identifier CR0115	Fire and Explosives	🔽 Weapons Exist 🔽 Agent Exists
		🔽 Contaminated Mat. 🔽 TNT Exists
Description: Munitions Container Inspection Rm.	Fire IE Frequency 3.73E-04	HEPA Filter
Room Cost in A 106257 Equip. Cost in 0.040100	Eloor Eire Contrib 411E-05	
100 Million Yen 9.243199		TArsenic in Water Spills/yr
Building: OR Floor: 1 Fragility 7	Building Fire Contrib. 0.00E+00	🗖 TNT in Water Spills/yr
Functional area: SRLC 💌 Roof Struct. ("RC(Blastproof)&	Fire Contained at Source 2.30E-04	🗖 Agent in Water 🛛 👘 Spills/yr
Room Area 1706.3 m2 Roof Thick. N/A	Fire Affects all of Room 4.41E-05	Service Time
Room Height 7 m Floor Struc. RC	Fire Affects Munitions or 1.06E-04	1 💌
Room Volume 119441 m3 Floor Thick 150	Fire rating:	Weapon Name Max SympFD Case
[11344.1 mb 11651 mb/c] 100		1 BRNBOMB 2 BRNBOMB_CONT
Equipment Type Count Near Ear	Automatic Fire Suppression	2 BW105 6 BW105_CONT
	Blast Area CR1	3 BW150 6 BW150_CONT
2		4 BW/5 12 BW/5 CONI
3	Explosion Grade 2	5 BWBOMB 2 BWBOMB_CONT
		<u>6 GR89 275 GR89_CONT</u>
	HVAC Information	7 RIUSD IBU RIUSD_CONT
	HVAC Rating	8 RIUSL 20 RIUSL CONT
		9 RI500 20 RI500_CONT
Connecting Rooms [Wall Thiskup Deer Ture Deer &	FilterTure	10 RI50L 20 RI50L CONT
Connecting Rooms Wall Inickne Door Type Door A	FilterType	10 D351 50 D351 CONT
		12 R/SL 50 R/SL_CONT
Z CKUIUZ B U		13 F900 300 K900 CONT
B BI	Glear Save Evit	14 ROUL DU ROUL CUNT
4 CKUIID B BI		
D UKUTT B BI		

Room Attributes Fire Frequency

Weapon Inventory

Fire Propagation Simulation

- Monte Carlo Simulation
- Modeled all Rooms
 - With and Without Weapons
 - Localized or Propagation throughout the room, to floor, or Entire Building
- Time Step Simulation
- Propagation of Fire Due to Detonation/ Deflagration

Past Seismic Events

Simulation of Seismic Consequences

- Monte Carlo Simulation
- Considered all Buildings and Rooms Simultaneously
- Structure Fragility Design Specific
- Time Step Simulation
- Propagation of Damage Due to Detonation/ Deflagration

Integrating the Models Batches of End States Grouped by Project Phase

Model Integration	Runs								
Save Save As Delete	Exit								
Integration Run Name	OCIP2_CONST]			Phase 1 CNST (Description Construction	PML PML Add to Total		
Description	OCIP2 During Constru	iction of Disposal			3		Add to Total Add to Total Add to Total		
End States File Name	C:¥rm10¥OCIP2¥INTE	GRATION¥OCIP2_DC	NST.txt	•					
Met File Name	C:¥rm10¥OCIP2¥INTEGRATION¥MET.txt				Start Time: 18:16:06 22 FEB 2006 Iteration : 6250 Building Final Curves				
LOSS_WR File Name	C:¥rm10¥OCIP2¥INTE	GRATION¥LOSS_WR	txt	•					
Iterations	6250 Iterati	on Start 📃 Ite	eration Finish 6	249		.01.00 20 FED 200			
Seed 1	36637	Seed 2	13425 🗆 I	ígnore E	Blast Effects Em	ergency Plan 1			
CW Varia	bles	Health	n Variables		Eco	onomic Variables			
SoK Name	Distribution	SoK Nam	e Distribution		SoK N	ame Distributi	on		
1		1 H1 2 H2	HRHL62 HBHL72	_	1 E1	ECON01			
3		3 H3	HRHL23		3				
5		4 H4 5 H5	HRHL33 HRHL43		4				
6		6 H6	HRHL53		6				
8		8 H8	HRHL63		8				
9		9 H9	HRHL24	_	9				
			IRRE34		10				
		Run	Gave	Exit					

Sample Risk Curve Uncertainties

Loss Exceedance Curve (LEC)

- Represents the probability that a certain level of monetary loss will be exceeded during 2.5-year project.
- LEC incorporates uncertainty in event occurrence probability and

The PML is that place on the exceedence curve where a lower probability of loss will NOT translate into a relatively higher monetary loss. For example here is the PML for the median loss.

Components of Loss Exceedence Curve

But Caveat Consulters! Some important things to remember about PRA

Much is learned in the process of creating and quantifying the PRA. The act of trying to measure the risk involved is the source of knowledge. The acts of trying to assign values, combining them, questioning their verisimilitude, building the model are the great treasure of PRA: the key to the treasure is the treasure itself. Uncertainty is not some noisy variation around a mean value that Represents the true situation. Variation itself is nature's only irreducible essence.

Variation is the hard reality, not a set of imperfect measures for a central tendency. Means and medians are the abstractions.

Much is learned in the process of creating and quantifying the PRA. The act of trying to measure the risk involved is the source of knowledge. The acts of trying to assign values, combining them, questioning their verisimilitude, building the model are the great treasure of PRA: the key to the treasure is the treasure itself. Much is learned in the process of creating and quantifying the PRA. The act of trying to measure the risk involved

is the source of knowledge. The acts of trying to assign values, combining them, questioning their verisimilitude, building the model are the great treasure of PRA: the key to the treasure is the treasure itself.

Uncertainty is not some noisy variation around a mean value that represents the true situation. Variation itself is nature's only irreducible essence. Variation is the hard reality, not a set of imperfect measures for a central tendency. Means and medians are the abstractions.

Too often risk is defined as **risk = likelihood** * **consequence** and **safety = 1-risk**.

This can misinform: acceptable risk is a consideration of likelihood **AND** consequence, not a simple multiplication with safety as the additive inverse of risk.

Acceptable risk and safety are normative notions, changing with situations and expectations, and must be assessed accordingly.

Contact Information

- David Johnson djohnson@absconsulting.com
 Steve Epstein
 - sepstein@absconsulting.com